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Abstract

In using the space environment for material processing,
fundamental fluid mechanical problems intrinsic to the
processing configuration should be identified and studied to
improve the grade of the products further. The present
investigation addresses the stability of a rotating column of
two immiscible liquids of different density surrounded by an
impermeable cylindrical boundary in the absence of gravity,
and summarizes the effect of parameters deduced naturally in
nondimensionalizing basic equations on hydrodynamic
instability.

1. Introduction

Processing of special materials or medicines in space is
more advantageous than conventional processing techniques -
because its low gravity field can yield improved purity and
uniformity of the products. ~ Currently, material processing in
space is in a testing phase; however, with the advent of the
space station, it is expected to be more proliferated in the future.
In using the space environment for material processing,
fundamental fluid mechanical problems intrinsic to the
processing configuration should be identified and studied to
improve the grade of the products further.

The present investigation addresses the stability of a
rotating column of two immiscible liquids of different density
surrounded by an impermeable cylindrical boundary in the
absence of gravity. In any real application to material
processing in space, the cylinder will be of finite length have
various boundary conditions imposed on each end, and the fluid
within will be viscous.  As a first approximation, an inviscid
two-fluid system contained in a cylinder of infinite length is
considered so that variations along the axial coordinate can be
ignored.

Here only linear stability theory is applied, so the effect
of nonlinearity, imperfect bifurcation, efc., are not considered.
Stability results for single component rotating liquids with
free surfaces in zero gravity are presently available. These
include studies on rotating liquid columns with an outer free
surface by Hocking and Michael® and Hocking®, and studies by
Yih'™® and Pedley® for rotating flow either exterior or interior to
a cylindrical boundary. Boudourides and Davis' presented
some generalized Rayleigh stability criteria for free surface
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rotating liquid systems with consideration given to both
viscous and inviscid fluids.

In a general rotating liquid system with interfacial
surface tension, one expects three types of instability to occur.
There is Rayleigh instability in the bulk fluid brought about
by centrifugal forces, capillary instability, and Rayleigh-
Taylor instability. In the present investigation only rigid
rotation at angular velocity Q is considered. Hence there can
be no axisymmetric centrifugal instability since in each fluid
phase the Rayleigh discriminant®

@(r)=—1;—d—(r2s2)2 = 4Q?
r°dr

~ is positive. Consequently, instability may arise either

through Rayleigh-Taylor instability or through the effect of
surface tension at a liquid-liquid interface or at a free surface.

2. Equation of Motion

The configuration sketched in Figure 1 exhibits the
cylindrical polar coordinate system (7, 0, z), the interfacial
boundary at  =a, and the cylinder wall at 7 =b. The constant
fluid densities and

Figure 1 Schematic diagram of the rotating immiscible two-fluid system
with interface at r=a and outer cylinder at r=b.  Also shown is the
cylindrical (r, 0, z) coordinate system.
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viscosties are p, and ., , where subscripts 1 and 2 denote inner
and outer fluids, respectively. The interfacial surface tension
coefficient ¥ is also assumed constant. Motion of the fluid in
each region is governed by the Navier-Stokes equations in a
frame of reference rotating about the z-axis at angular velocity
Q and the equation of continuity in which ¢ is the time variable,
and u;, p; andv; are the velocity, pressure, and kinematic
viscosity in each fluid region. The (r, 6, Z) component
velocities relative to the rotating frame are respectively (i,
v,wy)- Scaling time with Q-1 lengths with the interfacial
radius @, velocities with £ a and pressures with p,&2 22, the
nondimensional component form of equations  in cylindrical
coordinates are

du, 2
—&+(ui 'V)ui —Y‘——Hvi =———21_i
ot r AT Or 2.19)
. .1a
A L) A 2
Pim7y R\ 200
1 1 dp,
—4+(u 'V)V.-i-—‘—l'-i-?.l———z—.——o“p‘
ot r A r 90
(2.1b)
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where A =p, /p, is the density ratio and R;= Qad*/v; arethe
interfacial Reynolds numbers of the inner (i=1) and outer (i=2)
fluids. The undisturbed interface is conveniently positioned
atr = 1 and the outer cylinder wall is located at r = X, where K
Note that the limit K —>00 is
taken holding the interface radius constant, so that the two-
fluid interface is always present in that limit. The position of
the disturbed interface is denoted r = 1 + (9, z, ) and n is the
local outward normal unit to the interface. ~Viscous boundary
condition on the axis and at the impermeable outer wall are,
respectively

=b/a is the inverse radius ratio.

D, =Dg @=0 (2.2a)

u, =0, @=x. (2.2b)
The interfacial conditions are continuity of normal particle
velocity

an +V[ an an @1 . (220
U =—+——+w . —,@=1+m (Z2C
Yogr r 40 Yoz

continuity of normal stress

2 [ou, du,
P, P1= | X -L,Ven
RZ

or or
,@r=1+m (22d)

and continuity of the tangential stresses

v, v, 1du dv, v, 1ldu,
x|— -t = |t
o r r do or r r dfo
J@r=1+m (2.2¢)

du, ow, du, ow, @=1 2.26)
Ly L= |—=+—=|,@=1+n (.
x oz or oz or

where X = W,/I4, is the ratio of absolute viscosities and,
generalizing the notation of Hocking* we define L; =Y /p;&2 29
as the ratio of surface tension forces to centrifugal forces of
fluid i = 1 or 2 at the interface.

Disturbance Equations

The base state in the rotating frame is one of zero
velocity in each fluid domain

u, =u, =0 @3

and corresponding pressure distributions are given by
1., ‘
Do =P +5)\r ,0=r= 1 (2.3b)

1 2 1_‘/1
P =Po £ 57~ -Ll=r=x.

2.3¢
5 2 (2.3¢)

Consider now arbitary small (€ « 1) disturbances to the base
flow of the form

(u; ] OW U, 1

Vi v

w, | = te W ei(kz+nﬂ)+s[ 2.4)
D Dio P,

m] [ 0] [4]

where U, V, W, and P; are radial eigenfunctions, Aisa
constant, & is the axial wavenumber, n is the azimuthal mode
number and s is the complex growth rate. In generals =0 +
iw, where o is the real growth rate of disturbances oscillating
at frequency . It is important to distinguish between
different types of disturbance mode described by (2.4). There



are planar modes for which & = 0; when n = 0 the modes are
axisymmetric; and when both £ = 0 and n = 0 the modes are
helical. Inserting (2.4) into the full equation of motion (2.1),
subtracting the base flow (2.3), and linearizing gives the
complex disturbance equations

sU, ~2V, = ——=DP, +
A 1
. (2.5a)
2
o2
R, 2]
sV, +2U; =— "2_.Pi+
rA
(2.5b)
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r
The linearized boundary conditions are
P, finite ,@r=0 (2.6)
U, =V, =W, =0 ,@=x (2.6b)
U =s4 ,@r=1 (26¢c)

with continuity of normal interfacial stress

2 (U
Pz_fjl'_"—( :

‘RZ

ou
- X——l) ~WA,@r=1 (26d)
or or

and continuity of the tangential interfacial stress

r r rl/ r
@r=1 (2.6¢e)

XD, +ikU, | =[DW, +ikU, |
@r=1 (2.60)

We have introduced W = (1-A) + (K*+n*-1)L, as the density-
* dependent generalization of the notation adopted by
Boudourides and Davis*. The operators L, L,, D, and D are
defined as

L, 1k w21

1 d
1 L—D +1DD D+— D~—~(°7)
dr

L=L,~

Note also that interfacial conditions are now evaluated at r=1,
the linearized position of the interface.

3. Flow Instability Calculation

Before attempting to solve the boundary value problem,
it is useful to search for criteria dictating regions of flow
stability. ~Although the criteria do not give definitive regions
for flow instability, they aid in narrowing down the regions in
which instability is expected to occur. In the case of an
inviscid fluid, stability criteria was derived for axisymmetric,
planar, and spiral disturbances by Weidman®, and the results are
summarized in L,-A parameter space as shown in Figure 2.
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Figure 2 Stabﬂxty in L,-\ space. For the modes shown the region of
stability is the space enclosed by counter-clockwise rotation of the dashed
line about its pivot point at L,=0, A=1.

The region of stability for all wavenumbers & of planar/spiral
modes for n = 2 includes the two other regions of stability
shown in the sketch; the region for stability of planar/spiral
modes for n = 1 includes the smaller region of axisymmetric
stability. The common area which defines stability with
respect to all infinitesimal disturbances of modal form (2.4)is
the region bounded by the L, and A coordinate axes and the line
L,=1-\. Any regions of flow instability must lie outside
this triangular region in L, = A space.

3.1 Planar Instability

The investigation for inviscid planar disturbances & =0
can be carried out analytically. In this case the axial
disturbance velocity W, = 0 in each fluid domain and equation
(2.5¢)is irrelevant.  Affer some calculation the following
eigenvalue relation is obtained’

(5+ A)s? +2i(1-A)s +n%, =0 (310

where



K2+ 1

§=——,1=sds®° (31b)

Skt -1

The eigenvalues are either complex or pure imaginary, the
latter determining the sufficient condition for stability. ~ Thus,
stability is insured when the discriminant of (3.1 a) is positive,
viz.,

(21 +n2+8)T,]>0 G29

where
W, = (1-A)+(n® -1)L, (2v)
Two ranges of A are now considered separately. In the

range 0 < A = 1 for which the core fluid is lighter than its
surrounding annulus, equation (3.2 a) gives

(W=AF +n(n+8)(1-A)+ L, (n’ -1)]>063)

keeping in mind that L, is always positive, for n =1 inequality
(3.3) is satisfied for any value of L,. Whenn= 2 one obtains

[n(1- A )2 +0)+ (1= 2)']

Loz n(nz.—l)(/l +6)

3.4

the right hand side of which is always negative. Hence when
0= A = 1 the flow is stable to all planar disturbances. Note
that A = 0 corresponds to a hollow core vortex in solid body
rotation bounded by an outer cylinder.

Setting A =A-!, we now consider the range 0 < A < 1 for
which the outer fluid is lighter than core fluid. Equation (3.2
a) may be written

(1= &)+l + A L, (n* 1)~ (1-A)]>0.65)

The limit A = 0 corresponding to a cylindrical column of
liquid in rigid rotation about its axis warrants special attention
since it includes the rotating Rayleigh jet’ (through a Galilean
transformation which does not affect flow stability). In this
case (3.5) may be written

(n=D[nln +DL, -1]>0 36

The lowest planar mode n = 1 corresponds to neutral stability;
the sufficient condition for stability is given by

L — nx=2 (37
l>n(n+1) " G2

a result originally found by Hocking and Michael®.  Thus the
rotating cylindrical column is stable to all planar disturbances
when L, > 1/6

We note that when (3.7) is not satisfied the flow is
unstable and the growth rate of the n¢z unstable planar mode
is given by

o= \[(n —1)[1—L1n(n + 1)] n=z2 (3.8)

Successively higher modes give rise to higher growth rates,
and the transition L, found by equating the growth rate of
nth and (n + 1)st modes, is determined to be

1

L, =—— 122 (3.9
Y 3a(n+1) ! G

3.2 Instability for the Rotating Liquid Column : A"=0

To our knowledge, the complete inviscid stability
boundary for the rotating Rayleigh jet has not been reported.
Pedley®, however, using a small wavenumber approximation
to Rayleigh’s’ growth rate equation, demonstrated that n =3
planar mode was more unstable than n =0 mode at L, =0.05.

The analytical study in 3.1 completes the problem of
planar instability for the rotating jet. Numerical results
stemming from axisymmetric and spiral disturbances for the
single-component rotating jet are presented in this section.
We exclude densities in the range 1< A < o since the flow is
unstable to Rayleigh-Taylor instability for both the planar and
axisymmetric modes; moreover, it is difficult to envision how
such an initial state for this range of densities might be realized
in an actual physical situation.

Axisymmetric Disturbances

The inviscid equation and boundary conditions are giveh
by (2.5) and (2.6) for i =1.  Further calculations yield the
general eigenvalue relation for the rotating liquid jet

sE+ 4 2in

a]"l(a) = - = ,(3.10)

I (a) 1+Q1-k*-n")L,

where I(z) is the modified Bessel function of the first kind with
argument z in general complex, and the prime denotes
differentiation of the Bessel function with respect 1o 1ts
argument.

The eigenvalue equation governing axisymmetric
disturbances on a rotating jet found by setting n=0 in (3.10)
is given by

]0|(a> SZ +4
a = -
I(a) 1+(@1-k")L,

(3.11)



Maximum growth rates o,, and the corresponding critical
wavenumber &, are now computed for rotating columns where
L, is finite. . The maximum growth rate is found by first
sefting s =0 in (3.11) and puttivng differentiation of (3.11) with
respect to k equal to zero. One obtains, after some
mathematics, the eigenvalue relation

(k* -1 (0% + d)I 2 () + 200 [ (o) (@)
= [ ~1)(0” + 4)+ 28 |1,* (@)

where o =0 No?® +4

determining O, as a function of k&, °. Subsequently, L, may
be determined from the solution of (3.11) when k=1.

, (3.12)

Spiral Disturbances

Axisymmetric instability occurs throughout the entire
range of wavenumber space and spiral modes exhibit a cut-off
wavenumber &, °,

k, =J1-1/L,. (313)

For wavenumbers k <k, both modes of instability are present,
and one cannot determine a priori which mode will be most
unstable. Goto® showed that the axisymmetric mode is
always more unstable but that o, and &, for the two modes of
instability converges as L,—0.

The important results for instability of the rotating
Rayleigh jet are summarized in Figure 3 in which growth
rate for the first spiral is included for comparison.
Axisymmetric instability occurs for all L;>0.1053. Below
this value the rotating jet is unstable to the n=2 planar mode up
to the first transition point L,,=1/18 at which point n=3 planar
mode becomes dominant. Successive iterations occur with
increasing L,, apparently ad infinitum.

L,

Figure 3 Maximum growth rate for competing axisymmetric, planar, and
spiral instabilily for rotating jet; the solid upper line gives the most unstable
mode as a function of L.

3.3 Instability for the Two-Fluid System: OsAs1

When the annular fluid is heavier than the core fluid,
there is no Rayleigh-Taylor instability and the flow is stable to
all planar and spiral disturbances according to the stability
criteria results summarized in Figure 2. Here we investigate
instability with respect to axisymmetric disturbances.

The equation determining axisymmetric stability and
dispersion for the two-fluid system is

[awljor (a) + A(s?> +4)], (a)}l«‘l(a,_/o’)(3 42
~(s* + ), ()F,(@,8) = 0 |

where -

E(@6)= 1, (K, (B)= K, (L' B),
Fy(e,B) =1,(0)K,' (B) =K, (), ()~~~

, W,=1+(k*1)L, and P=xo..
K, (z) is the modified Bessel function of the second kind with
complex argument z.

The Hollow Core Vortex: A=0

We first consider the hollow core limit of equation
(3.14) obtained by setting A=0. Inserting the explicit forms
for F, and F, one obtains the eigenvalue relation. In addition
to the liquid jet, Rayleigh® considered the stability of a
nonrotating hollow core embedded in a fluid of infinite domain
for which k—>c0, Inthis limit the eigenvalue relation reduces
to

@)

> +4)=ay _I_{l)i__ (3.15)
Ky (a)

We now proceed to accurately recompute Rayleigh’s®
critical wavenumber in the nonrotating limit € —0,
remembering that £ appears in both the
nondimensionalization of the complex growth rate and L,.

- One obtains the asymptotic relation as

) _ kK -DEK,' (k)
57 = L,
Ko (k)

(L, ~>). (3.16)

Numerical computation of o, and &, as a function of Z,
at selected value of ¥ are presented in Figure 4. This figure
comprises a summary of results for the rotating hollow core
system. Figure 4(a) shows that increasing X decreases
stability; thus for fixed hollow core size, stability is decreased
as the volume of surrounding liquid increases. Note also in
Figure 4(b) that all critical wavenumbers satisfy &, < ko where
the cut-off wavenumber is given by’



ky ={1-1/L, (317

1 H Lo 15 20 25 Jjo
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Figure 4 (2) Maximum growth rate and (b) critical wavenumber for
axisyrametric instability of the rotating hollow core liquid column at
different values of the parameter k. The dashed line in (b) shows the
cut-off wavenumber kg

The Two-Fluid System; A=0

When both liquids are present, the governing equation
for axisymmetric disturbances for arbitary A, L,and X is given
by (3.14). Theresults of extensive numerical calculations to
determine O, and k, over arange of L, at A=0, 1/4, 1/2, 3/4 and
1 for k=1.2 are plotted in Figure 5. The maximum growth
rate curves in Figure 5(a) exhibit a cross-over point at
L,.=3.305 where 0,=0.262. For values L,<L,,, increasing
the density ratio A yields higher growth rate, an intuitive
results for high centripetal acceleration. ~For L,>L,., on the
other hand, increasing the density ratio yields lower growth
rates. The critical wavenumbers in Figure 5(b) all satisfy k.
< k, where the cut-off wavenumber kq is given by’

ky =41-(Q1-A)/L, (@18

Note that each two-fluid system is stable for Ly<1-\, in
agreement with the stability diagram in Figure 2.

4, Conclusion
An investigation of instability of an inviscid,

immiscible, two-fluid system in solid rotation has been
performed.  The system is stable to centrifugal instability

S

Figure 5 (a) Maximum growth rate and (b) critical wavenumber  for
axisymmetric instability of the rotating two-fluid column at k=1.2 for
different values of the density ratio A.

but may undergo Rayleigh-Taylor instability or capillary
instability at an interface. An important project for future
work would be to carry out a comprehensive viscous stability
analysis for this problem.
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